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Abstract 15 

The assessment of cropland carbon and nitrogen (C & N) balances play a key role to identify 16 

cost effective mitigation measures to combat climate change and reduce environmental 17 

pollution. In this paper, a biogeochemical modelling approach is adopted to assess all C & N 18 

fluxes in a regional cropland ecosystem of Thessaly, Greece. Additionally, the estimation and 19 

quantification of the modelling uncertainty in the regional inventory are realized through the 20 

propagation of parameter distributions through the model leading to result distributions for 21 

modelling estimations. The model was applied on a regional dataset of approximately 1000 22 

polygons deploying model initializations and crop rotations for the 5 major crop cultivations 23 

and for a timespan of 8 years. The full statistical analysis on modelling results yields for the C 24 

balance carbon input fluxes into the soil of 12.4 ± 1.4 tons C ha-1 yr-1 and output fluxes of 11.9 25 

± 1.3 tons C ha-1 yr-1, with a resulting average carbon sequestration of 0.5 ± 0.3 tons C ha-1 yr-26 

1. The averaged N influx was 212.3 ± 9.1 kg N ha-1 yr-1 while outfluxes were estimated on 27 

average of 198.3 ± 11.2 kg N ha-1 yr-1. The net N accumulation into the soil nitrogen pools was 28 

estimated to 14.0 ± 2.1 kg N ha-1 yr-1. The N outflux consist of gaseous N fluxes composed by 29 

N2O emissions 2.6 ± 0.8 kg N2O-N ha-1 yr-1, NO emissions of 3.2 ± 1.5 kg NO-N ha-1 yr-1, N2 30 

emissions 15.5 ± 7.0 kg N2-N ha-1 yr-1 and NH3 emissions of 34.0 ± 6.7 kg NH3-N ha-1 yr-1, as 31 

well as aquatic N fluxes (only nitrate leaching into surface waters) of 14.1± 4.5 kg NO3-N ha-1 32 

yr-1, N fluxes of N removed from the fields in yields, straw and feed of 128.8 ± 8.5 kg N ha-1 yr-33 

1.  34 
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Graphical abstract: Result distributions of all nitrogen fluxes with means and medians 40 

 41 
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1 Introduction 44 

Food security as well as the agricultural productivity depend to a major extend on the applied 45 

nitrogen (N) fertilizers (Klatt et al., 2015a). Worldwide, the N fertilizer use for the years 1960 to 46 

2005 has increased from 30 to 154 million tons (IFADATA, 2015). In Europe, the increase of 47 

yields in arable land and grassland systems was 45-70% since 1950 (EFMA, 2009)  due to the 48 

agricultural production systems intensification. Excessive use of N fertilizers, though 49 

beneficially affecting the yield, could cause a harmful impact to the environment, e.g. increased 50 

gaseous emissions and aquatic fluxes of nitrous oxide (N2O) to the atmosphere and leaching 51 

of nitrate (NO3) into water bodies (Erisman et al., 2011; Galloway et al., 2013; Kim et al., 2015)  52 

The N2O poses a twofold environmental threat. From the one hand, it is a strong greenhouse 53 

gas with a warming potential of 300 times greater (in a 100-year time period) than carbon 54 

dioxide (CO2) and from the other hand, it is a major driver of ozone depletion in stratosphere 55 

(Ravishankara et al., 2009). The fertilizer use aiming at the increase of the agricultural 56 

production is the most crucial anthropogenic source of atmospheric N2O, which at present 57 

contributes for approximately 45% of total anthropogenic N2O emissions on a global scale 58 

(Jones et al., 2014). Because of the global population growth and thus a growing food and 59 

feed demand (Godfray et al., 2010), the fertilizer use will probably increase. Consequently, the 60 

prediction of the current business-as-usual scenarios show doubled anthropogenic N2O 61 

emissions by the year 2050 (Davidson and Kanter, 2014). The European countries have 62 

recently set up bilateral agreements in order to reduce N2O emissions from cultivated crop 63 

lands (EU-Commission, 2014). Similarly, the European Nitrates Directive (EU-Commission, 64 

2019; Musacchio et al., 2020) aims at NO3 leaching reduction to water bodies to avoid both an 65 

increase of eutrophication (Camargo and Alonso, 2006) and drinking water pollution. Because 66 

of the hazardous N2O and NO3 effects, agricultural systems are necessary to be evaluated for 67 

their profitability and productivity as well as for their impacts to the environment.  68 

The N2O and NO3 production and consumption in agricultural lands are regulated to a large 69 

extend by N plant uptake and, also, the microbial processes of denitrification and nitrification 70 

(Butterbach-Bahl et al., 2013). The factors controlling both the microbial metabolism and plant 71 

https://doi.org/10.5194/bg-2023-52
Preprint. Discussion started: 28 March 2023
c© Author(s) 2023. CC BY 4.0 License.



5 
 

N uptake are a) soil conditions (Butterbach-Bahl et al., 2013) and b) cultivation management 72 

practices e.g. crop rotation, fertilizing amount and timing, and ploughing (Smith et al., 2008).  73 

In order to reach a minimization of the environmental footprint of feed and agricultural 74 

production while securing the global food security (Garnett et al., 2013), it is mandatory to 75 

tighten the N cycling on intensified agricultural systems e.g., by harmonizing N demand of 76 

crops with soil N availability driven by fertilization.  77 

A number of environmental/ecosystem models have been developed and used to describe the 78 

structure of multiple biogeochemical processes (Wainwright and Mulligan, 2004.). For the 79 

estimation/quantification of the GHGs emissions from different agroecosystems, modelling 80 

approaches are constantly gaining ground due to the in-situ data limitation (field campaign and 81 

laboratory costs) and the variation in spatial and temporal scales. The simulated results may, 82 

also, have uncertainties resulting from different sources, which can be, though, quantified 83 

increasing the accuracy of the estimates. Mechanistic models integrating relevant processes, 84 

which simulate agricultural production, and, also, reactive N losses to the environment are 85 

valuable tools to infer practices for a sustainable agriculture. In recent years, process-based 86 

biogeochemical models such as e.g. DNDC (Li, 2000), DAYCENT (Parton et al., 1998), 87 

ECOSSE (Bell et al., 2012) and CERES-EGC (Gabrielle et al., 2006) have proven their 88 

applicability to simulate N2O emissions and NO3 leaching from various land uses. Despite the 89 

fact that their accuracy is being assessed against in-situ data, few studies are reported to use 90 

sensitivity and uncertainty analyses in total N and C cycling simulation by process-based 91 

models (Verbeeck et al., 2006). 92 

In this analysis, the process-based bio-geochemical model LandscapeDNDC (Haas et al., 93 

2013) was applied to the agricultural cropland systems in the region of Thessaly (Greece). The 94 

objective of our study was to i) assess and report the cropland C and N balance including all 95 

associated fluxes such as e.g. CO2, N2O and NH3 emissions, NO3 leaching as well as the soil 96 

carbon stock changes; ii) to assess and quantify the modelling uncertainty of the simulated C 97 

and N balance and flux estimations as requested by the IPCC (IPCC, 2019); and iii) to 98 

demonstrate the feasibility and robustness of a regional uncertainty assessment methodology 99 
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for C and N cycling by propagating 500 joint parameter and input data distributions through 100 

the model (each representing a full regional inventory simulation) yielding regional result 101 

distributions for any modelling estimations.  102 

 103 

2 Material and Methods 104 

2.1 Model description 105 

LandscapeDNDC is a modular process-based ecosystem model for simulating the bio-106 

geochemical change of C and N in croplands, forest and grassland systems at both site and 107 

regional scale. The modules combined are about plant growth, micro-meteorology, water 108 

cycling, physico-chemical-plant and microbial C and N cycling and exchange processes with 109 

atmosphere and hydrosphere of terrestrial ecosystems. LandscapeDNDC is a generality of the 110 

plant development and soil biogeochemistry of the agricultural DNDC and Forest-DNDC (Li, 111 

2000). There is a successful application of earlier model versions in a number of studies, e.g. 112 

water balance (Grote et al., 2009; Holst et al., 2010), plant growth (Cameron et al., 2013; 113 

Werner et al., 2012), NO3 leaching (Kim et al., 2015; Thomas et al., 2016) and soil respiration 114 

and gas emission trace (Chirinda et al., 2011; Kraus et al., 2014; Molina-Herrera et al., 2015). 115 

For the initialization of LandscapeDNDC physical and chemical site-specific soil profile 116 

information is used (specified for different soil depths): Soil organic carbon (SOC) and nitrogen 117 

(SON) content, soil texture (clay, sand and silt content), of the plant growth and soil 118 

biogeochemistry, bulk density, pH value, saturated hydraulic conductivity, field capacity and 119 

wilting point. Daily or hourly climate data of air temperature (max, min and average), N 120 

deposition, precipitation, and atmospheric CO2 concentration are used in LandscapeDNDC in 121 

combination with agricultural management practices e.g. crop planting and harvesting, 122 

fertilizing (synthetic and organic) or feed cutting and tilling are used to drive LandscapeDNDC 123 

simulations. Regarding fertilization management three types of mineral fertilizers, i.e. urea, 124 

compound fertilizers based on NH4 and NO3 as well as organic amendments, i.e. green 125 

manure, farmyard manure, slurry, straw, bean cake and compost are currently considered. 126 
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The growth of crops and grasses is similar to the DNDC approach using two major parameters 127 

that describe seasonal plant development (cumulative temperature degrees days) and 128 

maximum reachable biomass under optimum conditions (Li, 2000) while daily growth 129 

limitations due to water and nutrient availability are considered. Model parameters describing 130 

soil and vegetation characteristics are obtained from an external parameter library. In 131 

LandscapeDNDC, the parameterization of the main cultivated commodity crops in Europe 132 

occurs by default parameter sets representing an average plant type while process parameter 133 

values for micro-meteorology, water cycle and bio-geochemical processes were obtained from 134 

previous validation studies, e.g. (Klatt et al., 2015a; Molina-Herrera et al., 2016; Rahn et al., 135 

2012) proving that the LandscapeDNDC model could be universally applicable for similar 136 

conditions.  137 

For all simulations in the current study, site-specific crop parameterizations were derived in a 138 

preceding analysis of various site scale simulations and validations of yield characteristics 139 

across the region. An overview of the crops cultivated at the different study sites and detailed 140 

information on specific crop rotations used to simulate crop growth are provided in Table A2 141 

(supplementary material). 142 

2.2 Case study description and input data 143 

The region of Thessaly is located in Central Greece covering a total area of 14 000 Km2, where 144 

5000 Km2 is lowland and approx. 2300 Km2 and 6500 Km2 are semi-mountainous and 145 

mountainous land respectively. The plain of Thessaly is considered to be among the largest 146 

agricultural land of the country (Kalivas et al., 2001) accounting for almost 410 000 ha, of which 147 

about 370 000 ha is arable land where almost 80% is covered by annual and 10% by perennial 148 

crops (ELSTAT, 2012). The crop/plant production of the region is around 14.2% (ELSTAT, 149 

2012) of the total production of the country (2nd in Greece). 150 

Soil input data for the region was available from the European Project Nitro Europe IP (Sutton 151 

et al., 2013) based on the European Soil Database (ESDB v2.0, 2004) containing, soil type 152 

and soil profile description of bulk density, SOC content, texture (sand, silt clay), pH value, 153 
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stone fraction, saturated hydraulic conductivity, wilting point and water-holding capacity in 154 

various soil strata (Cameron et al., 2013). A regional soil dataset for the area of interest 155 

contained about 1500 spatial polygons out of which approximately 1000 covered the cultivated 156 

cropland that was finally simulated. The climate data for the regional simulations was derived 157 

at polygon level from gridded ERA5 climate data for Greece. 158 

2.3 Agricultural Management and model input data processing 159 

The total cultivated area and the respective yields for the years 2010 to 2016, used in the 160 

current analysis were obtained from the Hellenic Statistical Authority (ELSTAT). Moreover, 161 

data associated with the animal capital for the respective years was also provided (ELSTAT) 162 

in order to estimate the annual manure production distributed in the region however no data is 163 

available on whether and how much of the manure is used in croplands. For the water 164 

management, the percentage of irrigated and non-irrigated land (estimated to almost 50% for 165 

each case) was also given (ELSTAT) while indicative sets of irrigation management data were 166 

acquired through the River Basin Management Plans of the Special Secretariat for Water, 167 

Ministry of Environment and Energy (YPEKA, Portmann et al., 2010). The irrigation water 168 

volumes were estimated based on the crops needs and the minimum and maximum quantities 169 

necessary according to literature while using upscaling tools to get the regional values. The 170 

fertilization data sets were provided by Fertilizer Producers and Merchandiser Association 171 

(FPMA) for the recent years (2010-2016) and are equated to the annual consumed quantities 172 

on a national level, scaled down to a regional level based on crop pattern in the Region of 173 

Thessaly cultivated land.  174 

In this study, the five main crops maize, wheat, clover, cotton and barley were considered, 175 

covering the majority of the cultivated arable land in the region (over 95%) while the remaining 176 

cropland was included acquiring the final corrected land/crop coverage. In Table 1 the resulting 177 

crop rotation scenarios (R1 - R5) are presented for the evaluation period 2012 - 2016. Note, 178 

each rotation sequence (R1 – R5) is shifted in time such that for each year, each crop appears 179 

exactly in one rotation. Based on the crop cover contribution in each simulated year the crop 180 
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rotation contribution factors were estimated and are summarized in Table 2. The management 181 

practices were based on the general agricultural practices applied in the region and information 182 

provided by farmers. 183 

 184 

Table 1. Summary of the crop rotation scenarios (R1- R5) for the region of Thessaly. The crop abbreviations corn, 185 
wiwh, clover, cott and wbar refer to maize (food corn and silage maize), winter wheat, clover (legume feed crops 186 
s.a. alfalfa or vetch), cotton and winter barley respectively. 187 

year R1 R2 R3 R4 R5 

2012 clover cotton wbar corn wiwh 

2013 cotton wbar corn wiwh clover 

2014 wbar corn wiwh clover cotton 

2015 corn wiwh clover cotton wbar 

2016 wiwh clover cotton wbar corn 

 188 

Table 2. Crop cultivation area contribution per year to the aggregation of the five rotations; data constant across 189 
the region of Thessaly 190 

Crop Rotation Contribution [% / 100] 

Years R1 R2 R3 R4 R5 

2012 0.15 0.15 0.45 0.11 0.14 

2013 0.13 0.29 0.09 0.10 0.39 

2014 0.29 0.13 0.10 0.35 0.12 

2015 0.15 0.11 0.43 0.16 0.16 

2016 0.10 0.36 0.14 0.14 0.25 

 191 

 192 

2.4 Uncertainty analysis 193 

As stated in the IPCC 2006 guidelines and updated in 2019, the assessment of uncertainty is 194 

considered a major and crucial/mandatory component when compiling regional or national 195 

GHG emission inventories (Larocque et al., 2008). The difference in scale in which the model 196 

is used results in divergent errors of the C and N dynamics prediction across different climate 197 

zones and scales. Thus, uncertainty analysis is a crucial step towards a higher quality decision 198 
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making process. The sources of uncertainty can vary and are related to a) the initial conditions 199 

(starting values), b) the drivers (e.g. climate and crop management data), c) the conceptual 200 

model uncertainty and d) the parameter uncertainty of the various processes (Refsgaard et al., 201 

2007; Wang and Chen, 2012).  202 

Santarbarbara (2019) performed a Bayesian Model Calibration and Uncertainty Analysis using 203 

a Monte Carlo Markov Chain (MCMC) approach targeting uncertainties associated to the data 204 

(bulk density, SOC, pH, clay content) of the initial soil conditions, drivers (cropland 205 

management such as fertilization/manure rates & timing, harvest & seeding timing, tillage 206 

timing) and bio-geochemical process parameterizations.  207 

In order to identify the most sensitive process parameters with a reduced number of model 208 

simulations, the Morris method (Morris, 1991) obtains a hierarchy of parameters influence on 209 

a given output (gaseous N fluxes) and evaluates whether a non-linearity exists or not. (Morris, 210 

1991) proposed that this order can be assessed through the statistical analysis of the changes 211 

in the model output, produced by the "one-step-at-a-time" changes in “n” number of proposed 212 

parameters. Incremental steps of each parameter range, lead to identifying which ones have 213 

substantial influences over the concerned results, without neglecting that some effects could 214 

cancel each other (Saltelli et al., 2000), leading to the identification of the 24 most sensitive 215 

process parameters (Houska et al., 2017; Myrgiotis et al., 2018b). 216 

 217 

2.4.1 Metropolis – Hastings algorithm 218 

The Markov Chain Monte Carlo (MCMC) Metropolis–Hastings algorithm results in numerous 219 

parameter sets that approximate the posterior joint parameter distribution by performing a 220 

random walk through the space of joint parameter values. This probability evaluation of the 221 

data obtained from each step leads to the update of the initial uniform parameter distributions. 222 

Bayes’ formula relating conditional probabilities may become a powerful and practical 223 

computational tool when combined with Markov chain processes and Monte Carlo methods, 224 

so-called Markov Chain Monte Carlo (MCMC). A Markov chain is a special type of discrete 225 
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stochastic processes wherein the probability of an event depends only on the event that 226 

immediately precedes it. Integrating parameters (θ) and observation data (D) into Bayes’ rule 227 

results in the formula: 228 

 229 

 

 
𝑃(θ|D) =

𝑃(D│θ* ∗ 𝑃(θ)
𝑃(D)

 2.1 

where 𝑃(D│θ*, the probability of the data, is used to obtain the probability of these parameters 230 

updated by the data: 𝑃(θ|D) where the evidence is computed as:  231 

 232 

 

 

𝑃(𝐷) = - 𝑙𝑖𝑘𝑒𝑙𝑦ℎ𝑜𝑜𝑑 ∙ 𝑝𝑟𝑖𝑜𝑟	 ∙ 	𝑑θ 
2.2 

 

where 𝑃(𝐷) can be numerically approximated with the aforementioned MCMC method (Robert 233 

and Casella, 2011).  234 

The method uses prior knowledge concerning the sources of the model uncertainty to obtain 235 

a narrowed posterior distribution for each one of the sources. By propagating the parameter 236 

distributions through the model, the overall uncertainty in the model results can be quantified. 237 

In the current analysis, 500 joint parameter sets were sampled from the posterior distributions 238 

in combination with input data perturbations as reported by Santabarbara (2019) and were 239 

deployed in simulations (propagation through the model) for the regional inventory leading to 240 

500 inventory simulations. A statistical analysis was, afterwards, applied to estimate the 241 

updated regional and temporal result distributions. 242 

 243 

2.5 Statistical methods and data aggregation 244 

2.5.1 Regional result aggregation 245 

One full regional inventory simulation consists of 10 individual inventory simulations: Five (5) 246 

different crop rotations for irrigated and rain feed conditions were simulated in parallel (see 247 

section 2.3). The results of the crop rotations were aggregated according to the crop shares 248 
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per year (see Table 2) accounting for all effects of the different crops cultivated in the region 249 

for irrigated and rain feed conditions. The final inventory simulation results were obtained by 250 

considering irrigated versus rain feed water management. The final inventory contains 251 

simulation results aggregated to area weighted yearly means across the total simulation 252 

domain accounting for the cropland area of each polygon.  253 

 254 

2.5.2 Uncertainty quantification and statistical analysis 255 

A regional aggregation was performed for all 500 uncertainty simulations. All the uncertainty 256 

results were finally reported via statistical measures evaluating the 500 regional uncertainty 257 

simulation runs reporting mean values, standard deviation, medians and the 25 and 75 258 

interquartile ranges (IQR, Q25 to Q75).  259 

 260 

3 Results Analysis and Evaluation 261 

The simulation time span was from 2009 to 2016, while the years 2009 – 2011 were used as 262 

spin-up to get all soil C and N pools into equilibrium after the initialization. Therefore, reported 263 

simulation results are limited to years 2012 - 2016. The assessment of the regional C and N 264 

balances (CB and NB) were obtained - as a consequence of the uncertainty quantification - 265 

resulting in distributions and therefore reported by statistical measures such as mean/median 266 

or interquartile ranges of the uncertainty ensemble.  267 

 268 

3.1 Regional yield simulations and validation 269 

The evaluation of the model performance in estimating the NB and CB components was 270 

analyzed based on the comparison of the simulated yield values with the observed yield data 271 

provided by the Hellenic Statistical Authority (ELSTAT), averaged for the total simulated 272 

period. 273 

 274 
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3.1.1 Crop yields and feed production  275 

For model validation, datasets of crop yields from Hellenic Statistical Authority (ELSTAT) were 276 

used. Table 3 summarizes the aggregated regional crop yields for all the simulated years and 277 

the respective mean, median and standard deviation values resulted from the statistical 278 

analysis of the simulation results together with the observed yield and feed production provided 279 

by the Hellenic Statistical Authority (ELSTAT). Simulated yields consist for cotton of the cotton 280 

bolls, clover feed is the total cutting and harvested above ground biomass, for wheat and barley 281 

is the grain yield and for maize is accounted grain ear and the stems. Based on the 282 

observations, maize appears to be the dominant crop with an average yield of 12 tons ha-1, 283 

followed by clover product of 8.4 tons ha-1. The rest of the three crop yields appear to be in the 284 

same order of magnitude from 3.3 up to 3.4 tons ha-1.  285 

 286 

Table 3. Simulated and observed yields and feed production [tons dry matter ha-1] in the region of Thessaly. All 287 
results are based on statistical aggregation across all polygons, rotations, years and finally across all 500 UA 288 
inventory simulations. The observed values of dry matter (DM) are provided by the Hellenic Statistical Authority.  289 

Simulated crop yield and feed distributions  

 [tons dry matter ha-1] 

Observed 

[tons dry matter ha-1] 

Crops Median Mean standard deviation Mean 

Cotton 3.5 3.3 0.8 3.3 

Clover 9.8 9.6 0.6 8.4 

Wheat 3.9 3.6 0.9 3.4 

Barley 4.7 4.5 1.0 3.3 

Maize1) 10.2 9.9 1.4 12.0 
1) Observation data for maize did not distinguish between food corn and silage maize.  290 

 291 

Additionally, the simulated average yield of cotton was estimated to 3.3 ± 0.8 tons DM ha-1, 292 

wheat to 3.6 ± 0.9 tons DM ha-1, barley 4.5 ± 1 tons DM ha-1, maize 9.9 ± 1.4 tons DM ha-1. As 293 

for the feed, the clover was estimated to 9.6 ± 0.6 tons DM ha-1. The average nitrogen use 294 

efficiency (NUE) across time and space is 63.29%.  295 

 296 
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Figure 1 presents the uncertainties of the simulated crop yield across the whole evaluation 297 

time span 2012 -2016 both in irrigated and rain feed conditions. As shown, corn shows a much 298 

more narrow distribution with a higher median for the irrigated scenario compared to the rain 299 

feed while shows the same extreme value variations. To the contrary, winter barley has a wider 300 

distribution and slightly higher median for the irrigated scenario and, also, a wider extreme 301 

value variation. As for cotton, the distribution appears to be bimodal for the rain feed scenario 302 

in which the median is also lower than the one in the irrigated case. In addition, the extreme 303 

value variation is wider in the latter case. Finally, for the example of winter wheat irrigated and 304 

rain feed scenarios reach the same results.  305 

 306 

 307 

Figure 1. Simulated crop yield uncertainties across the evaluation time span 2012 - 2016 for irrigated and rain feed 308 
conditions. Horizontal lines indicate median, mean, maximum and minimum values of the distributions.  309 

 310 

3.2 Regional Carbon and Nitrogen Balance 311 

3.2.1 Carbon Balance (CB) 312 

For the CB, Figure 2 presents average C input fluxes into the soil of 12.4 ± 1.4 tons C ha-1 yr-313 

1 (with inter quartile ranges (IQR) from Q25 to Q75 of 12.1 to 13.2 tons C ha-1 yr-1) and output 314 

fluxes of 11.9 ± 1.3 tons C ha-1 yr-1 with IQR from 11.6 to 12.7 tons C ha-1 yr-1. The resulting 315 

carbon sequestration was estimated to 0.5 ± 0.3 tons C ha-1 yr-1 with IQR from 0.4 to 0.7 tons 316 

C ha-1 yr-1 (data summarized in Table 4). 317 
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 318 

  
 

Figure 2. Carbon balance for cropland cultivation for the region of Thessaly: a) Total carbon balance of cropland 319 
soils in mio. tons C, b) averaged Carbon Balance in tons C ha-1 and c) averaged fluxes across the region and the 320 
years 2012-2016. (Positive change equals soil C sequestration).  321 

 322 

The input fluxes consist of annual gross primary productivity (GPP) of 11.7 ± 1.4 tons C ha-1 323 

yr-1 with IQR from 11.4 to 12.4 tons C ha-1 yr-1 and carbon applied to soils in manure estimated 324 

by 0.7 ± 0.001 tons C ha-1 yr-1 (see Table 4). This compares on the other hand to respirative 325 

carbon fluxes from the soil to the atmosphere (TER) of 8.5 ± 1.1 tons C ha-1 yr-1 with IQR from 326 

8.2 to 9.1 tons C ha-1 yr-1 and carbon fluxes via exported crop yields and feed (including all 327 

straws and removed crop residues) of 3.4 ± 0.3 tons C ha-1 yr-1 with IQR from 3.4 to 3.6 tons 328 

C ha-1 yr-1. The aggregation of the carbon fluxes to the regional level of approx. 360 000 ha of 329 

cropland results in 4.25 ± 0.20 M tons C yr-1 by GPP, 0.25 ± 0.01 M tons C yr-1 carbon influx 330 

via organic fertilizers compared to 3.08 ± 2.97 M t C yr-1 TER and 1.24 ± 0.05 M t C yr-1 carbon 331 

exports via crop yields and feed production leading to a net carbon sequestration of 0.5 ± 0.3 332 

M tons C ha-1 yr-1 with IQR from 0.4 to 0.7 M tons C ha-1 yr-1 (M tons C as Million tons carbon).  333 

 334 

Table 4. Carbon Balance (per hectare) Assessment and Uncertainty Analysis of the of cropland cultivation at the 335 
region of Thessaly, Greece. 1) mean; 2) standard deviation; 3) median; Interquartile ranges: 4) Q25: 25 quartile, 5) 336 
Q75: 75 quartile are applied across the 500 values for the quantities in this table; 6) C-Inputs as the sum of the 337 
absolute values of all the input fluxes of the 500 simulations; 7) C-Outputs as the sum of the absolute values of all 338 
the output fluxes of the 500 simulations; 8) SOC-changes as the difference between the input and output fluxes of 339 
each of the 500 simulations.  340 

 Mean1) Std2) Median3) Q254) Q755) 

 [tons C ha-1 yr-1] [tons C ha-1 yr-1] [tons C ha-1 yr-1] [tons C ha-1 yr-1] [tons C ha-1 yr-1] 

      

C-Inputs6) 12.4 1.4 12.7 12.1 13.2 
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C-Outputs7) 11.9 1.3 12.2 11.6 12.7 

SOC-changes8) 0.5 0.3 0.5 0.4 0.7 

      

Input fluxes      

GPP 11.7 1.4 12.0 11.4 12.4 

C in manure 0.7 0.0 0.7 0.7 0.7 

      

Output fluxes      

TER 8.5 1.1 8.7 8.2 9.1 

Biomass export 3.4 0.3 3.5 3.4 3.6 

      

 341 

3.2.2 Nitrogen balance (NB) 342 

In  343 

 344 

Figure 3 the assessment of the distribution of the NB with the in- and out-fluxes is presented. 345 

The averaged nitrogen influx (represented by the uncertainty ensemble mean) per hectare was 346 

estimated to 212.3 ± 9.1 kg N ha-1 yr-1 with IQR from 203.3 to 220.0 kg N ha-1 yr-1 while nitrogen 347 

out-fluxes were estimated in average to 198.3 ± 11.2 kg N ha-1 yr-1 with IQR from 191.4 to 348 

204.0 kg N ha-1 yr-1 ( 349 
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 350 

Figure 3) leading to a net N accumulation in the soil of 14.0 ± 2.1 kg N ha-1 yr-1 with IQR from 351 

11.9 to 16.0 kg N ha-1 yr1. 352 

 353 

 354 

Figure 3. Nitrogen balance for cropland cultivation for the region of Thessaly; a) Total NB in k-tons N and b) 355 
averaged NB in kg N ha-1; Data averaged for the years 2012-2016. Horizontal lines indicate mean (red), median 356 
and minimum and maximum of the distribution.  357 

 358 

Table 5. Nitrogen Balance (per hectar). Summary of the Assessment and Uncertainty Analysis of the NB Fluxes 359 
(per hectare) of cropland cultivation of the region of Thessaly, Greece. 1) N-Inputs as the sum of the absolute values 360 
of all input fluxes of the 500 simulations; 2) N-Outputs as the sum of the absolute values of all the output fluxes of 361 
the 500 simulations; 3) N-stock-changes as the difference between the input and output fluxes of each of the 500 362 
simulations; 4) Gaseous emissions are the sum of N2O, NO, N2 and NH3 fluxes; 5) Aquatic flux is nitrate leaching 363 
(NO3

-). 364 

 Mean Std Median Q25 Q75 

 [kg N ha-1 yr-1] [kg N ha-1 yr-1] [kg N ha-1 yr-1] [kg N ha-1 yr-1] [kg N ha-1 yr-1] 

      

N-Inputs1) 212.3 9.1 215.2 203.3 220.0 

N-Outputs2) 198.3 11.2 196.4 191.4 204.0 

N-stock-changes3) 13.8 2.1 13.7 14.5 12.5 
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Input fluxes      

N deposition 6.3 0.8 6.8 6.0 6.8 

Bio. N fixation 45.6 4.3 45.7 43.7 47.7 

N in min. fertilizer 80.2 4.8 81.3 76.6 82.7 

N in organic fertilizer 80.2 3.6 80.9 77.5 82.7 

      

Output fluxes      

Gaseous emissions4) 55.4 8.8 55.1 48.9 61.6 

N2O 2.6 0.8 2.5 2.1 3.1 

NO 3.2 1.5 2.9 2.0 4.1 

N2 15.5 7.0 14.6 9.9 20.7 

NH3 34.0 6.7 31.8 29.3 36.9 

Aquatic fluxes5)      

NO3 leaching 14.1 4.5 13.6 11.0 17.0 

      

 365 

The N influx was composed by the input of synthetic fertilizer of 80.2 ± 4.8 kg N ha-1 yr-1 (IQR 366 

76.6 to 82.7) and organic fertilizer of 80.2 ± 3.6 kg N ha-1 yr-1 (IQR from 77.5 to 82.7), followed 367 

by the biological nitrogen fixation (BNF) via legumes estimated as 45.6 ± 4.3kg N ha-1 yr-1 (IQR 368 

from 43.7 to 47.7) and nitrogen deposition of 6.3 ± 0.8kg N ha-1 yr-1 (IQR from 6.0 to 6.8). Thus, 369 

almost 75% of the nitrogen input influx is related to the fertilization (mineral and organic) whilst 370 

the minor part that corresponds to nitrogen fixation and deposition approximates to 25%.  371 

The N outflux consist of gaseous N fluxes of 55.4 ± 8.8 kg N ha-1 yr-1 (IQR from 48.9 to 61.6), 372 

aquatic N fluxes (only nitrate leaching into surface waters was considered) of 14.1 ± 4.5 kg N 373 

ha-1 yr-1 (IQR from 11.0 to 17.0), N fluxes by removed N in yields, straw and feed of 128.8 ± 374 

8.5 kg N ha-1 yr-1 (IQR of 125.2 to 131.7) (see Figure 4 and Table 5). Based on the 375 

aforementioned results all gaseous and aquatic N-fluxes correspond to about 28% and 7% of 376 

the N output flux respectively, while the far largest N output flux was N removed in yields, straw 377 

and feed representing almost 65% of the N outflux (Figure 4). 378 
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  379 

Figure 4. Averaged annual nitrogen balance (inner ring of the pie diagram) and their decomposition into the various 380 
components of the N fluxes (outer ring of the pie diagram); (all data summarized in Table 5).  381 

 382 

The simulated gaseous fluxes were composed of N2O emissions estimated to 2.6 ± 0.8 kg 383 

N2O-N ha-1 yr-1 (IQR from 2.1 to 3.1), NO emissions of 3.2 ± 1.5 kg NO-N ha-1 yr-1 (IQR from 384 

2.0 to 4.1), N2 emissions 15.5 ± 7.0 kg N2-N ha-1 yr-1 (IQR range from 9.9 to 20.7) and NH3 385 

emissions of 34.0 ± 6.7 kg NH3-N ha-1 yr-1 (IQR from 29.3 to 36.9). Ammonia volatilization 386 

represents the largest share (61.48%) of gaseous N losses, with highest densities in the 387 

emission distribution between approx. 25 and 35 kg N ha-1, followed by di-nitrogen losses 388 

(28.03%) of gaseous N losses, with a much wider emission variability in the distribution, 389 

followed by NO3 (5.79%) and N2O (4.7%). Figure 5 shows the overall NB in a waterfall diagram 390 

adding up cumulative all in- and out-fluxes illustrating the uncertainty distribution of each flux 391 

contributions. The waterfall diagram illustrates the overall outcome of the NB, a N accumulation 392 

into the soil as the difference between all out-fluxes minus all in-fluxes. 393 

 394 
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  395 

Figure 5. Waterfall representation of the result distributions of the different Nitrogen in- and outfluxes of the cropland 396 
cultivation in Thessaly. Vertical lines in the distributions indicate mean values of the corresponding N-flux. Red 397 
colors indicate gaseous outfluxes, blue aquatic fluxes, green biomass yield and feed production outfluxes and brown 398 
color indicates N influxes such as synth. N-fertilizer, N-Manure, biological N fixation (BNF) and N deposition. The 399 
Resulting N sink of the Nitrogen Balance (based on distribution means) is -13.8 kg N ha-1 yr-1. (Negative value 400 
indicates flux into the soil). 401 

 402 

Nitrate leaching mean estimates were 14.1 ± 4.5 kg NO3-N ha-1 yr-1 (IQR from 11.0 to 17.0) 403 

with a bell-shaped distribution.  404 

Total yield and biomass (straw and feed) N export fluxes were 62.4 ± 4.4 kg N ha-1 yr-1 with 405 

uncertainty ranges from 59.9 to 65.1 consisting of yield N exports (grains and cotton balls) of 406 

30.3 ± 1.7 kg N ha-1 yr-1 (IQR from 29.6 to 30.9) and for straw and feed N exports of 36.1 ± 6.0 407 

kg N ha-1 yr-1 (IQR from 34.9 to 37.6). The result distributions for yield N are well bell shaped, 408 

for feed biomass N very moderate bell shaped and well distributed within the bounds and for 409 

straw N very sharp within a comparable small interval.  410 

Figure 5 illustrates the cumulative nitrogen fluxes composing the NB as a waterfall diagram 411 

considering the mean of each component. The NB results in a net N sink of 13.8 kg N ha-1 yr-412 

1 (see result distribution in Figure 6) for the region corresponding to an annual carbon 413 

sequestration of approx. 0.5 tons C ha-1 yr-1 as depicted in Figure 2 b) (see also the annual 414 

dynamics of the topsoil (30 cm) soil organic carbon and nitrogen distributions in Figure 8).  415 
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 416 

 417 

Figure 6. Distribution of the overall Nitrogen Balance of the cropland cultivation in Thessaly: Statistical analysis 418 
across all 500 individual NB results of the inventory simulations (mean 13.8 kg N ha-1 yr-1, median 13.7 kg N ha-1 419 
yr-1) corresponding to the Carbon balance in Figure 2.  420 

 421 

Figure 7 and Figure 8 show the dynamics of the annual distribution of the gaseous and aquatic 422 

outfluxes as well as the dynamics of the annual distributions of the top soil (30 cm) soil organic 423 

carbon and nitrogen pools for the evaluation period 2011 – 2016.  424 
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Figure 7. Annual dynamics of the uncertainty distributions of the gaseous (subfigure a) to d)) and aquatic (subfigure 425 
e)) N outfluxes 2011 – 2016. Uncertainty bandwidth (blue band) defined as the range between the q25 and the q75 426 
quartile, green band (Q10. to Q90 interval) indicating the variance of the fluxes neglecting the outliners of the 427 
distribution.  428 

 429 

  

  

Figure 8. Annual dynamics of the uncertainty distributions of the soil carbon (subfigure a)) and soil organic nitrogen 430 
(subfigure b)) and the corresponding dynamics of the uncertainty distributions of the annual change rates of the 431 
total soil carbon and nitrogen pools (subfigures c) and d)) respectively.  432 

4 Discussion.  433 

Simulating the N and C budgets is helpful for the understanding/explanation of the pattern how 434 

nutrients are being supplied from the soil to crop as well as the pathways of the excess 435 

gaseous and aquatic excess nitrogen fluxes. In this way, improvements on the agricultural 436 

practices e.g. N fertilization strategy could be accomplished to sustain agricultural output and 437 
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minimize environmental harm. In this study, an assessment of the full C and N balance of a 438 

regional cropland agroecosystem is reported for the first time using inventory simulations with 439 

a process-based ecosystem model in combination with the quantification of the associated 440 

modelling uncertainty. Up to present, process-based modelling studies mainly focus on single 441 

site applications e.g. Daycent: (del Grosso et al., 2005; Gurung et al., 2020), APSIM: (Vogeler 442 

et al., 2013), CERES-EGC: (Dambreville et al., 2008; Gabrielle et al., 2006; Heinen, 2006; 443 

Hénault et al., 2005), CERES-Wheat: (Mavromatis, 2016), DNDC: (Li, 2000), 444 

LandscapeDNDC: (Haas et al., 2013; Klatt et al., 2015a; Molina-Herrera et al., 2016; Zhang et 445 

al., 2015). Fewer studies deploy models on the regional to national (del Grosso et al., 2005; 446 

Kim et al., 2015; Klatt et al., 2015a) or continental to global scale (del Grosso et al., 2009; 447 

Franke et al., 2020; Jägermeyr et al., 2021; Smerald et al., 2022; Thompson et al., 2019). All 448 

of these studies focus in general on one specific or a few components of the carbon or nitrogen 449 

cycle such as e.g. soil carbon stocks or N2O emissions.  450 

There are very few cases where an attempt for regional estimation of the NB has been made. 451 

Schroeck et al., (2019) reported an assessment of the NB for a large alpine watershed in the 452 

Austrian Alps characterized by arable production in the low-lying areas and grassland in the 453 

mountains. In addition, Lee et al., (2020) tried to estimate nitrogen balances in Switzerland 454 

alternating the cropping systems or management practices. There were, also, cases where 455 

the regional NB was estimated with the use of nitrogen balance equations (He et al., 2018).  456 

In order to achieve a more concrete and complete analysis of the CB and NB that could be 457 

used for future policy development, an uncertainty analysis is considered as 458 

necessary/mandatory. The IPCC guidelines demand for UNFCC reporting the uncertainty 459 

quantification of any reported inventory study (IPCC Updated guidelines 2019). Recent 460 

publications have reported the deployment of different methods to assess and quantify the 461 

various sources of uncertainty in ecosystem modelling. (Klatt et al., 2015b) published a study 462 

on the impact of parameter uncertainty on N2O emissions and NO3 leaching on the regional 463 

scale. (Houska et al., 2017) deployed the GLUE method (Generalized Likelihood Uncertainty 464 

Estimation) for the LandscapeDNDC model on a grassland site, others studies such as 465 
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(Lehuger et al., 2009a; Li et al., 2015; Myrgiotis et al., 2018a) used the Bayesian Model 466 

Calibration and Uncertainty Assessment approach, which has been used in the current study 467 

as well. 468 

 469 

4.1 Yield and feed Production 470 

A number of studies including crop yields estimates under different environmental conditions 471 

and crop management options have been published. Molina-Herrera et al., (2016) reported 472 

validation results deploying LandscapeDNDC on cropland and grassland sites across Europe. 473 

The study reported good agreement in reproducing observed above ground biomass and yield 474 

estimates leading to a high trustworthiness of model results. Similar model performance for 475 

the cultivation of commodity crops was reported by (Kasper et al., 2019; Klatt et al., 2015a; 476 

Molina-Herrera et al., 2017; R. J. Petersen et al., 2021) 477 

Voloudakis et al., (2015) simulated cotton production in seven different areas of Greece 478 

applying the AquaCrop model for future climate scenarios. The model was calibrated and the 479 

results were validated with data sets acquired for years 2006 and 2005/2007 respectively from 480 

a site experiment conducted in the area of Karditsa, Thessaly. The observed and simulated 481 

results presented in the study were well matched and in line with the results presented in our 482 

study with averaged yields of 3.65 tons ha-1 (mean 3.3 tons ha-1 and median 3.5 tons ha-1).  483 

Lyra and Loukas, (2021) used REPIC model to estimate the crop growth/yield production of 484 

several crops in the Basin of Almyros, Thessaly. The simulated results were approximately 11 485 

tons ha-1 clover, 3.3/3.5 tons ha-1 cereals/wheat, 3.8 tons ha-1 cotton and 9 tons ha-1 maize, 486 

being well compared to the results of the current research shown in Table 3.  487 

The application of AquaCrop in the cotton cultivation of the research of Tsakmakis et al., 488 

(2019), proved the accurate estimation of the cotton yield when using the default set of 489 

parameters in both cases of growing degree days (GDD) and calendar days (CD) modes for a 490 

site in Northern Greece. For the year of 2015 the harvested seed cotton yield was 3.974 tons 491 

ha-1 ± 0.45 and 3.35 tons ha-1 ± 0.397 in 2016 with a slight overestimation of 0.018 tons ha-1 492 
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and 0.026 tons ha-1 while in 2016 there was a marginal underestimation by 0.06 tons ha-1 and 493 

0.046 tons ha-1 for the respective aforementioned cases. The model did not perform well when 494 

the parameter sets were altered based on other studies (García-Vila et al., 2009).  495 

There are few cases in literature concerning yield simulations on a European level. Based on 496 

the yield datasets of FAO and EUROSTAT Ciais et al., (2010a) estimated mean crop yields 497 

for the period 1990–1999 at the scale of EU-25 as 6.1 (FAO) and 5.3 (EUROSTAT) tons DM 498 

ha−1 yr−1, respectively, which corresponds well to results of our study. Haas et al., (2022) 499 

estimated with a model ensemble mean for crop yields for EU-27 of 4.41 ± 1.85 tons DM ha−1 500 

yr−1 for the period 1990–1999. Lugato et al., (2018) estimated cropland yield projections of 501 

4.34 tons DM ha−1 yr−1 (mean), ranging from 3.69 to 4.90 tons DM ha−1 yr−1 with the DayCent 502 

model for EU-27, comparable to the 6.18 tons DM ha−1 yr−1 average simulated crop yields of 503 

this study. The simulated yields in the current study vary from 3.3 to 9.9 tons DM ha−1 yr−1 for 504 

the cases of cotton and maize respectively.  505 

Higher yield estimates for the region of Thessaly in this study are certainly due to the inclusion 506 

of the legume feed crops in the rotations. This argument is supported by a recent meta-analysis 507 

by (Lu, 2020) that concluded that on average yield increases of 5.0 to 25% can be expected 508 

for various conditions if residues are completely returned to the field as compared to no-residue 509 

return systems. Similar results were reported by Fuchs et al., (2020) and Barneze et al., (2020).  510 

 511 

4.2 Carbon and Nitrogen Balance:  512 

4.2.1 SOC stocks  513 

Haas et al., (2022) reported results of a European inventory simulation of soil carbon stocks 514 

and N2O emissions using a model ensemble. The study deployed in a baseline simulation 515 

across EU-27 a similar residues management as compared to our study resulting in very stable 516 

carbon stock dynamics over a long period (1950-2100). In this study, the estimated carbon 517 

sequestration of 0.5 (UA mean and median) ± 0.3 tons C ha-1 yr-1 is mainly caused by the 518 

inclusion of legume feed crops within the crop rotation leading to increased litter production 519 
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and C input into the soil (Barneze et al., 2020; Fuchs et al., 2020; K. Petersen et al., 2021). 520 

Haas et al., (2022) reported a management scenario with 100% of crop litter remaining on the 521 

field leading to averaged C-sequestration rates of over 1 ton C ha-1 yr-1 across EU-27. As the 522 

residues management in this study is between the baseline and buried scenario of Haas et al., 523 

(2022), our results compare well to results reported in this study.  524 

Other studies such as (Lugato et al., 2014) reported C sequestration rates for the conversion 525 

of cropland into grassland ranging between 0.4 and 0.8 tons C ha−1 yr−1. Lugato et al., (2014) 526 

reported averaged SOC change rates for a cereal straw incorporation scenario for EU-27 of 527 

0.1 tons C ha−1 yr−1 (estimates from 2000 to 2020).  528 

The Mediterranean agroecosystems show a winter/summer rainfall and soil cover variation, 529 

spatial diversity, and the longest continuous settlement and dense cultivation by man (Yaalon, 530 

1997). Based on the Greek National Map of SOC (2020) by Triantakonstantis and Detsikas, 531 

(2021), SOC values for the region of Thessaly vary from 22.95 to 86.97 tons ha-1 with the lower 532 

values in the main plain of the region and higher values in the croplands closer to the 533 

mountainous areas. Comparing these maps with SOC map of the 30cm topsoil of our story, 534 

we clearly see similar patterns, which relate to the similarity of SOC data used to initialize the 535 

region in LandscapeDNDC.  536 

 537 

4.2.2  N2O emissions 538 

This study reported estimates of N2O emissions of 2.6 ± 0.8 kg N2O-N ha-1 yr-1 (IQR from 2.1 539 

to 3.1) for a mixed crop / legume feed crop rotation. The LandscapeDNDC validation study of 540 

Molina-Herrera et al., (2016) reported for the Italian site Borgo Cioffi (Mediterranean climate, 541 

Ranucci et al., (2011) annual N2O emissions of 2.49 kg N2O-N ha-1 yr-1 while two sites in 542 

southern France showed annual N2O emissions from 0.52 to 3.34 kg N2O-N ha-1 yr-1. N2O 543 

emission estimates of our study were higher than results reported by Haas et al., (2022) using 544 

a multi model ensemble estimating average soil N2O emissions from European (EU-27) 545 
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cropping systems for the period 1980–1999 of 1.46 ± 1.30 kg N2O-N ha−1 yr−1 under 546 

conventional (Baseline) management and comparable average N input.  547 

Leip et al., (2011) applied the DNDC–Europe model across EU-25 reporting averaged N2O 548 

emissions of 1.8 kg N2O-N ha−1 yr−1, while on basis of UNFCC reporting and a fuzzy logic 549 

model Ciais et al., (2010b) estimated average N2O emissions from EU-27 croplands at 1.46 ± 550 

0.22 kg N2O-N ha−1 yr−1. 551 

Klatt et al., (2015a) reported for an inventory (Saxony, Germany) mean N2O emission of 1.43 552 

± 1.25 kg N2O-N ha−1 yr−1 using a very similar uncertainty quantification approach.  553 

As discussed by Haas et al., (2022) and Janz et al., (2022), increased N2O emissions can be 554 

seen after the addition of crop residues and may be attributed to a stimulation of denitrification 555 

activity by the added substrate and the creation of anaerobic microsites by increased soil 556 

respiration.  557 

Arable land cultivation in Thessaly does not experience strong winter frost and severe soil 558 

freezing such that N2O freeze-thaw emissions as reported by Wagner-Riddle et al., (2017) or 559 

del Grosso et al., (2022) do not play any role in the N budget. 560 

The N2O estimations related to livestock presented in the study of Sidiropoulos and 561 

Tsilingiridis, (2009) varied in a range of 0.74 to 4.33 kt Ν2Ο, with an average of 2.84 kt Ν2Ο 562 

depended on the average values of emission factors used (for the year 2005). The estimates 563 

were based on the emission factors of IPCC guidelines and the number of animal heads were 564 

derived from the data sets acquired from the Hellenic Statistical Authorities as in the current 565 

study.  566 

Cayuela et al., (2017) conducted a meta-analysis of the direct N2O emissions for a number of 567 

cropping systems for the Mediterranean climate where the emission factors (EFs) were altered 568 

under different fertilization and irrigation conditions. Higher fertilization rates led to higher EFs 569 

(0.82% less than the 1% of IPCC). Additionally, irrigated and intensively cultivated crops had 570 

higher EFs than rainfed (up to 0.91% dependent on the irrigation method). The relatively high 571 

EF of maize in this study could be possibly attributed to the irrigation without the application of 572 

water-saving methods and the on average higher N application rates (Cayuela et al., 2017).  573 
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 574 

4.2.3 Nitrate leaching 575 

This study reported average NO3 leaching fluxes (only nitrate leaching into surface waters) of 576 

14.1 ± 4.5 kg NO3-N ha-1 yr-1. Molina-Herrera et al., (2016) reported for the LandscapeDNDC 577 

validation study cropland nitrate leaching fluxes of approx. 7 to 88 kg NO3-N ha-1 yr-1. In 578 

addition, in the research of Molina-Herrera et al., (2017) the described NO3 leaching results 579 

varied from 13 to 8 kg NO3-N ha-1 yr-1 from 2009 to 2012 showing higher values in regards to 580 

the precipitation and fertigation. The most comparable site Borgo Cioffi resulted in a 581 

comparable annual NO3 leaching flux of 18.62 kg NO3-N ha-1 yr-1. de Vries et al., (2011) 582 

estimated the NO3 leaching with the use of four different models with varying values from 5 to 583 

40 kg NO3-N ha-1 yr-1 for the area of our study. These high values could be explained by the 584 

fact that it corresponds both to groundwater and runoff. Klatt et al., (2015b) reported in an 585 

uncertainty assessment for a regional inventory (Saxony, Germany) leaching rates of 29.32 ± 586 

9.97 kg NO3-N ha-1 yr-1 for a wheat-barley-rapeseed rotation simulated by the LandscapeDNDC 587 

model. The agricultural system and management regime is comparable; higher NO3 leaching 588 

rates were most likely due to higher N fertilization rates (up to 150 kg N) compared with higher 589 

annual precipitation in the region leading to more intense percolation and therefore to stronger 590 

leaching of available NO3 while in our study the fertilization regime was more lean (up to 591 

average of 80 kg N input) such that soil nutrient competition was higher and available nitrate 592 

was more likely to be immobilized by plant uptake.  593 

 594 

4.2.4 NO emissions 595 

In the current study, the model estimated NO emissions were in average 3.2 ± 1.5 kg NO-N 596 

ha-1 yr-1. Butterbach-Bahl et al., (2009) performed the very first European inventory of soil NO 597 

emissions using a modified version of DNDC reporting low NO emission rates mostly below 2 598 

kg NO-N ha-1 yr-1. Molina-Herrera et al., (2017) recently reported a full NO emission inventory 599 

for the State of Saxony Germany compiling annual NO emissions from agricultural soils 600 
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ranging from 0.19 to 6.7 kg NO-N ha-1 yr-1 simulated by LandscapeDNDC. The study reported 601 

the model performance on simulating soil NO emissions on more than 20 different sites. The 602 

study of Schroeck et al., (2019) reported for a regional inventory of arable soils in Austria 603 

simulated by LandscapeDNDC annual NO emissions of 1.0–1.5 kg NO-N ha−1 (for the year 604 

2000), while empirical approaches such as Stehfest and Bouwman, (2006) estimated emission 605 

of similar magnitude. Zhang et al., (2015) reported in a model inter-comparison and validation 606 

study of NO and N2O fluxes including three ecosystem models, consistent simulation results 607 

for the LandscapeDNDC model with NO emission strengths of cropland soils were between 1 608 

and 3 kg NO-N ha-1 yr-1 across the sites.  609 

 610 

4.2.5 NH3 emissions 611 

Schroeck et al., (2019) stated that validation studies of NH3 volatilization for any 612 

biogeochemical model were very rarely reported in literature, mainly due to the complexity and 613 

a lack of flux observations at spatial and temporal high resolution.  614 

In our study the assessment of soil NH3 emissions of 34.0 ± 6.7 kg NH3-N ha-1 yr-1. High NH3 615 

volatilization and emission rates can be explained by the predominating neutral to basal soils 616 

conditions (pH values of 7 and above) in the study region favouring the Henry NH4/NH3 617 

equilibrium towards higher NH3 gases enabling ammonia to diffuse out of the soil into the free 618 

atmosphere.  619 

The IPCC emission factor (EF) method for NH3 volatilization reports estimates of 20% of N 620 

input into the soil to be volatilized as NH3. For our study, IPCC methodology for NH3 would 621 

lead to 16 kg NH3-N ha−1 yr−1, which is approximately half the emission strength of the 622 

simulated result. This is due to the neglection of soil properties in the IPCC EF approach which 623 

in contrast is reflected in the modelling approach.  624 

Sidiropoulos and Tsilingiridis, (2009) estimated a national livestock originated NH3 value of 625 

about 40 kt NH3 yr-1 of the total 73 kt NH3 yr-1 for Greece and the year 2005, which corresponds 626 
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to approx. 22 kg ha-1 yr-1 for the region of Thessaly (the arable land in the region accounts for 627 

20% of the national).  628 

Ramanantenasoa et al., (2018) compared two methods CADASTRE_NH3 and the one of 629 

CITEPA in France on a regional and national level in order to estimate the NH3 emissions and 630 

emission factors. CADASTRE_NH3 is a combination of spatial and temporal databases of 631 

meteorological, soil and N fertilizing data with the process-based Volt’Air model, on small 632 

agricultural regions scale. CITEPA is the organism responsible for the national inventories 633 

where the applied methodology is using a number of statistical data excluding the synthetic 634 

and organic fertilizer properties as well as the cultural practices. Their first model gave lower 635 

results than the second by 29%, being, though, higher than the reported in literature range of 636 

uncertainties. This difference was mainly explained as a difference in the observed applied N 637 

and ammoniacal-N (TAN) giving lower estimates of CADASTRE_NH3 emissions by 63% for 638 

the applications of the organic manure.  639 

There is a number of national NH3 inventories which could be considered detailed and well-640 

studied like the ones in Denmark, Netherlands, Europe, UK and US. In Denmark, (Geels et al., 641 

2012) used the DAMOS model to estimate the Danish NH3 emissions (crop, grass and manure 642 

manipulation) where the values ranged in the 5 regions under study from a very small quantity 643 

to 17.4 kg NH3-N ha−1 yr−1. In the case of the Netherlands (Velthof et al., 2012), a method was 644 

applied based on the estimation of total N excretion and the Total Ammoniacal N (TAN) 645 

percentage in the later. The total national estimated NH3 emission was 88.8 Gg NH3–N for the 646 

year 2009, of which the majority (87%) was related to the housing and manure estimation. de 647 

Vries et al., (2011) used four N budget models of varying complexity for the estimation of the 648 

most common N fluxes in EU27. In the case of NH3 emissions all the models give very 649 

comparable results, which based on their spatial distribution varied from 0-10 kg NH3-N ha−1 650 

yr−1 for our region under study. The result might differ from our estimated simulation since it is 651 

based on a set of emission factors.  652 

As discussed by Sutton et al., (2013) the majority of the NH3 emissions come as a result of the 653 

agricultural production and are considerably impacted by climate influence. In the case of NH3 654 
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volatilization, it could almost double every 5°C temperature given certain complex 655 

thermodynamics dissociation and solubility, whilst soil NH3 emission is influenced by the 656 

available water quantity allowing the NHx dissolution and use by microbial organisms, which is 657 

afterwards leading to decomposition.  658 

 659 

4.2.6 Full N balance  660 

At present, the studies of Schroeck et al., (2019) and Lee et al., (2020) are the only to be found 661 

by Web of Science under the search key words “nitrogen AND balance AND process AND 662 

based AND modelling” reporting a compilation of the nitrogen balance for a site or region 663 

applying a process-based ecosystem model even though IPPC is explicitly demanding such 664 

attempts.  665 

Leip et al., (2011) reported the first nitrogen balance for Europe following mixed approach 666 

combining the CAPRI (Common Agricultural Policy Regionalised Impact) model (a global 667 

economic model for agriculture) with different approaches estimating various nitrogen fluxes 668 

in arable land cultivation. The approach e.g. lacks to explicit quantification of the gaseous N 669 

fluxes. The study of Schroeck et al., (2019) overcame this hurdle and applied the process-670 

based ecosystem model LandscapeDNDC to estimate the full regional nitrogen budgets of 671 

different ecosystems (cropland, grassland and pastures) and climatic zones of a water shed in 672 

Austria. That is a considerable contribution to the attempt for estimating all the N fluxes 673 

possible since only a few countries could offer measurement networks, which could supply 674 

inventory estimates for independent validation Ogle and Paustian, (2005). 675 

The N2O estimate in Schroeck et al., (2019) and the current study is of a comparable level. In 676 

the later research, the estimated value was 2.6 kg N ha-1 yr-1 while Schroeck et al., (2019) 677 

reports 1.51 kg N ha-1 yr-1 lower about 40%. The NO fluxes differ by far since we reported a 678 

mean value of 3.2 kg NO-N ha−1 yr−1 while Schroeck et al., (2019) reports 0.08 kg NO-N ha−1 679 

yr−1. This is related to some recent model advances, which have been made during this study, 680 

which elevated the NO production in LandscapeDNDC (Molina-Herrera et al., 2017). Ammonia 681 
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volatilization differs, also, substantially between the two studies. Our study reports 34 kg NH3-682 

N ha-1 yr-1 and Schroeck et al., (2019) moderate emissions of 0.23 kg NH3-N ha−1 yr−1. The 683 

stronger NH3 volatilization in our study is mostly driven by the high pH-values of the soils in 684 

the region of Thessaly (pH values from 6.5 to 8.2 with a considerable spatial variation, Greek 685 

Soil Map, 2015) and the comparable high manure inputs of arable system in our study, while 686 

in the research of Schroeck et al., (2019) the manure was preferably applied to the grassland 687 

systems and mineral fertilizers to the arable land. Concerning the NO3, Schroeck reported 45.3 688 

kg NO3-N ha−1 yr−1 which 3 times higher compared to this study (14.1 kg N ha−1 yr−1) 689 

considering the N- input of approximately 140 kg and 212.3 kg N ha−1 yr−1 respectively.  690 

The N balance modelling study of Lee et al., (2020) is estimating for Switzerland a national 691 

cropland N balance using an upscaling method based on process-based site simulations with 692 

the DayCent model differentiating the management of the considered cropping systems e.g. 693 

fertilizer rates, tillage or land cover change. The study reported for conventional cultivations 694 

(averaged across 20 years) yield related N outputs accounting for about 60%, NO3- leaching 695 

36.1% and gaseous N emissions 4.1% of the total N outputs. Although the yield related N 696 

output is in accordance with our result of 64.95% there seems to be a discrepancy in the 697 

gaseous and aquatic N fluxes contribution, 27.94% and 7.11% respectively, which could 698 

possibly occur due to the differences in the soil and climatic conditions, or the arable crops 699 

included in the respective researches.  700 

Velthof et al., (2009) used the MITTERA-EUROPE model/method, based on the concoction of 701 

GAINS and CAPRI models, to estimate N fluxes of European soils on NUTS2 scale with the 702 

use of European datasets and literature coefficients, where the fertilizer application and 703 

management was similar to our methodology. The average N Input-Output balance was 704 

calculated as 117 kg N ha-1 yr-1 composed by manure of 49 kg N ha-1 yr-1, synthetic fertilizer of 705 

58 kg N ha-1 yr-1 (in the current study for both cases 80.2 kg N ha-1 yr-1), biological nitrogen 706 

fixation of 2 kg N ha-1 yr-1 (our research 45.6 kg N ha-1 yr-1) and N deposition of 7 kg N ha-1 707 

(current study 6.3 kg N ha-1 yr-1). In contrast to our study the reported output fluxes for NH3 of 708 

8 kg NH3-N ha-1 yr-1, N2O of 2 kg N2O-N ha-1 yr-1, NOx of 2 kg NOx-N ha-1 yr-1, N2 of 51 kg N2-N 709 
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ha-1 yr-1 and NO3 leaching of 7 kg NO3-N ha-1 yr-1 while the differences with the results presented 710 

in our study are NH3 of 34.0 kg NH3-N ha-1 yr-1, N2O of 2.6 kg N2O -N ha-1 yr-1, NOx of 3.2 kg 711 

NOx -N ha-1 yr-1, N2 of 15.5 kg N ha-1 yr-1 and NO3 leaching of 14.1 kg NO3-N ha-1 yr-1. 712 

Additionally, the yield output is estimated as 48 kg N ha-1 yr-1. The difference with the results 713 

presented in our study, could be related to the different input data used, based on regional 714 

statistics and the use of a biogeochemical model and not on literature factors as in the later 715 

study.  716 

He et al., (2018) assessed the soil N balance for a time spam between 1984 to 2014 based on 717 

the N budget equations (N input – N output) using multiple coefficients from literature in order 718 

to estimate the nitrogen input and output fluxes of six grouped regions in China. The used 719 

datasets were acquired from national Authorities and include cropping land and yields, 720 

synthetic fertilizers, animal heads, soil types etc. The N synthetic fertilizer input is in average 721 

182.4 kg N ha-1 and the organic fertilizer of 97.3 kg N ha-1, N fixation is estimated as 16.8 kg 722 

N ha-1 and the atmospheric deposition as 22 kg N ha-1. Almost half of the total averaged N 723 

output losses, 48.9%, was attributed to crop uptake while the respective gaseous losses were 724 

N2 19.9%, volatilized NH3 17.3%, N2O 1.2% and NO 0.7%. As for the NO3 leaching share was 725 

5.8% of the total output N fluxes. The previous results are comparable to the results of the 726 

current study mainly in the aquatic fluxes, which account for approx. 7%, as described in Figure 727 

4. The difference that appears in the N uptakes could be a result of the fact that in our study it 728 

includes the yield, straws and feed.  729 

Myrgiotis et al., (2019) reported a N2O emission factor (EF) estimate for arable land of 0.59% 730 

and associated uncertainty bands of ± 0.36% which is half of the N2O EF of our study of approx. 731 

1.2% (data not shown). The reported NO3 leaching factor (LF) mean for their region was 14% 732 

(±7 %). Myrgiotis reported an averaged NUF of 37 % (±7 %) which is almost half of the NUF 733 

of 67.3% we reported in the current study. 734 

As reported in OECD (OECD Nutrient Balance, 2020) the averaged nitrogen input rate for 735 

Greece is estimated at about 290 kg N ha-1 for the years 2010-2015. Based on the regional 736 

land share (~20% of the national arable land) the nitrogen balance of the area under study 737 
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becomes 11.6 kg N ha-1 yr-1. As presented in Table 5 the simulated mean nitrogen balance 738 

results in an in-flux of 13.8 kg N ha-1 yr-1 (IQR 11.9 to 16.0) which is well in line with the 739 

aforementioned OECD value.  740 

 741 

4.3 Uncertainty Analysis and Quantification  742 

The MCMC algorithm was used by Santabarbara (2019) to estimate the joint parameter 743 

distribution of the fundamental bio-geochemical process parameters in LandscapeDNDC 744 

when simulation soil C and N fluxes. Propagating these joint parameter distributions through 745 

the model (by sampling 500 joint parameter distributions and performing inventory simulations 746 

with each parameter set with the model) for estimating the regional C and N fluxes was leading 747 

to distributions for any model result on the regional scale. Statistical analysis calculating mean, 748 

median as well as the interquartile range (Q25 to Q75) determines best estimates and the 749 

uncertainty range of any model output on the regional scale, demonstrating the superiority of 750 

the method for assessing any ecosystem response by modelling instead of reporting single 751 

results. This is a novel approach, that to our knowledge has not been reported before in 752 

literature for the carbon and nitrogen balance and neither been applied to regional simulations 753 

by any process-based model. 754 

In this study, the estimated UA mean and median of the carbon sequestration of 0.5 ± 0.3 tons 755 

C ha-1 yr-1 is associated with an uncertainty range from 0.4 to 0.7 tons C ha-1 yr-1 which 756 

compares well to the spatial uncertainty of C-sequestration in the study of Haas et al., (2022). 757 

The approach used in this study enabled to assess the carbon and nitrogen balance of the 758 

cropland ecosystems including an assessment of the prediction uncertainty.  759 

van Oijen et al., (2005) used the Bayesian calibration method to acquire the parameter 760 

posterior probability distribution to sample from, for simulation of the model results. Lehuger et 761 

al., (2009b) used the Bayesian calibration method for the enhancement of the CERES-EGC 762 

model parameterization (reduction of the apriori parameter distribution) as well as 763 

quantification of the uncertainty of the simulated N2O emissions in different sites. The 764 
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estimated fluxes of the different sites resulted in a range between 0.088 to 3.672 kg N2O-N ha-765 

1 yr-1 with values for the q05 quantile of 0.066 to 0.115 kg N2O-N ha-1 yr-1 and for the Q95 766 

quantile from 1.676 to 5.874 kg N2O-N ha-1 yr-1 with an averaged value of 1.04 kg N2O-N ha-1 767 

yr-1 which is lower than the result of the current study but still in the same order of magnitude.  768 

Klatt et al., (2015b) quantified a parameter-induced uncertainty analysis on the regional scale 769 

applying the LandscapeDNDC model for simulating N2O emission and NO3 leaching 770 

inventories similar to our study. The region was represented by 4000 polygons of arable land 771 

(state of Saxony, Germany) for crop rotations of barley, wheat and rapeseed. The investigated 772 

model parameter related uncertainties give a high confidence for the parameter use in our 773 

research. The results of Klatt et al., (2015b) display a likelihood range of 50% (the IQR range 774 

between Q25 and Q75) for N2O emissions from 0.46 to 2.05 kg N2O-N ha−1 yr−1 which is in 775 

good comparison to our results of 2.1 to 3.1 kg N2O-N ha−1 yr−1. The average direct N2O 776 

emissions are 1.43 kg N2O-N ha−1 yr−1 comparable to the result of our study (mean: 2.6 and 777 

median: 2.5 kg N2O-N ha−1 yr−1 across approx. 1000 polygons). As for leached NO3, Klatt et 778 

al., (2015b) reported leaching rates of mean value: 29 kg NO3-N ha−1 yr−1, (IQR from 24.5 to 779 

36.0), which is higher compared to the results of our study: Mean: 14.1 kg NO3-N ha−1 yr−1, 780 

median: 13.6 kg NO3-N ha−1 yr−1 (IQR from 11 to 17). 781 

Butterbach-Bahl et al., (2022) reported the influence of management uncertainties for 782 

compiling national inventories of CH4 and N2O emission from various rice cultivation systems 783 

in Vietnam. The study applied a sampling technique varying model input data within a given 784 

range and analyzing the influence on the assessed CH4 and N2O emission strengths. As the 785 

underlying cropland systems were fundamentally different, the assessed uncertainty ranges 786 

were comparable and the study is supporting our approach to focus on reporting uncertainty 787 

ranges rather than single values.  788 

The current study postulates a novel approach to report regional scale C and N fluxes from 789 

process-based models to become the standard reporting method fulfilling the long-time 790 

demanded reporting requirements of the IPCC (IPCC Guidelines and IPCC 2019 updates on 791 

Guidelines). Additionally, instead of focusing only on topics limited to soil carbon stocks 792 
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dynamics or greenhouse gas emissions, we propose the report of the full C and N balance 793 

including all components of the various fluxes e.g. gaseous and/or aquatic being available by 794 

the individual process-based models. This constitutes an effective method to assess the 795 

environmental impact of the crop production on a national scale, therefore optimize the farming 796 

practices, and suggest possible solution for sustainable agriculture development.  797 

 798 

 799 

5 Conclusion  800 

 801 

In this research, we presented for the first time a regional inventory of the full carbon and 802 

nitrogen balance including all sub-components of these fluxes simulated by a process-based 803 

model. Additionally, the study has fulfilled the demand to report always the associated 804 

uncertainties for any modelling results being published in literature. This supports the 805 

trustworthiness of the reported results. The LandscapeDNDC model is applied in the region of 806 

Thessaly after using the MCMC Bayesian calibration method against soil, daily climatic and 807 

crop management regional datasets. The main scope/goal was the assessment of the total C 808 

and N balance that enhance the efforts towards the understanding of the cropland system and 809 

the respective interactions within the C and N balances.  810 

Observed GHG emission datasets are scarce if not unavailable. Thus, the modelled yield 811 

results were evaluated/validated against the observed values of crop yields provided by the 812 

Hellenic Statistical Authority and showed a good fit for almost all simulated crops except for 813 

the case of maize where there was a slight underestimation.  814 

In addition, a full uncertainty analysis is presented based on the Metropolis-Hastings algorithm 815 

where a parameter subset and input data preturbation was sampled and simulated in 500 816 

iterations resulting in a final probability density function (PDF) for each one of the N and C 817 

balance fluxes building a full uncertainty analysis of the modelled results. This helps to build 818 

trustworthiness in modelling assessments and estimates.  819 
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All of the above constitute the novelty of the conducted research that could be further 820 

elaborated by a number of proposed mitigation measures, which could help in the abatement 821 

of the GHG emissions and N fluxes from crop/agricultural land.  822 
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11 Appendix 1226 

11.1 Material and Methods 1227 

Sensitivity Index 1228 

In the first step, the Sensitivity Index algorithm (SI) (Pannell, 1997) was calculated for all 1229 

process parameters by splitting the parameter ranges into 10 equidistant values from minimum 1230 

to maximum and by rating SI values:  1231 

𝑆𝐼 =
𝐶𝑈𝑀!"# − 𝐶𝑈𝑀!$%

𝐶𝑈𝑀!"#
 1232 

where CUMmax and CUMmin are the maximum and minimum cumulative results of 10 1233 

simulations. High SI values explain a high sensitivity of the underlying parameter with respect 1234 

to the model results, whereas low values or even zero indicates low or no sensitivity.  1235 

 1236 

11.2 Results 1237 

Table A 1. Observed yield rates in the region of Thessaly. Cotton yields are the cotton bolls, clover feed is the total 1238 
harvested above ground biomass, for wheat and barley it is the grain yield, maize is accounted grain ear and the 1239 
stems Source ELSTAT.  1240 

Crop Yields [tons dry matter ha-1] 

Crops 2012 2013 2014 2015 2016 Mean 

Cotton 2.7 3.6 3.5 3.4 3.3 3.3 

Clover 8.6 8.9 8.7 7.9 7.7 8.4 

Wheat 3.3 3.3 3.3 3.7 3.6 3.4 

Barley 3.2 3.2 3.2 3.5 3.5 3.3 

Maize 10.9 12.1 12.3 12.7 12.1 12.0 

 1241 

Table A 2. Crop rotation scenarios (R1 – R5) for the region of Thessaly where the crop abbreviations corn, wiwh, 1242 
perg, cott and wbar refer to maize, winter wheat, clover (legume feed crops s.a. alfalfa or vetch), cotton and winter 1243 
barley respectively. 1244 

years R1 R2 R3 R4 R5 

2010 corn wiwh perg cott wbar 

2011 wiwh perg cott wbar corn 

2012 perg cott wbar corn wiwh 

2013 cott wbar corn wiwh perg 
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2014 wbar corn wiwh perg cott 

2015 corn wiwh perg cott wbar 

2016 wiwh perg cott wbar corn 

 1245 

Table A 3. Carbon Balance (totals) Summary of the Assessment and Uncertainty Analysis of the of cropland 1246 
cultivation of the region of Thessaly, Greece, GPP gross primary productivity, TER terrestrial ecosystem respiration, 1247 
Biomass export includes all C in yield, straw and feed exported from the fields, 360000 ha cropland. 1248 

 Mean Std Median Q25 Q75 

 [mio. tons C yr-1] [mio. tons C yr-1] [mio. tons C yr-1] [mio. tons C yr-1] [mio. tons C yr-1] 

      

C-Inputs 4.51 0.20 4.45 4.36 4.69 

C-Outputs 4.32 0.17 4.31 4.19 4.45 

SOC-changes 0.19 0.11 0.20 0.14 0.27 

      

Input fluxes      

GPP 4.25 0.20 4.21 4.11 4.42 

C in manure 0.25 0.01 0.26 0.25 0.26 

      

Output fluxes      

TER 3.08 0.16 3.06 2.97 3.20 

Biomass export 1.24 0.05 1.24 1.21 1.27 

      

 1249 

Table A 4 Nitrogen balance (totals) Summary of the Assessment and Uncertainty Analysis of the total Nitrogen 1250 
Balance of cropland cultivation of the region of Thessaly, Greece. 1251 

 Mean Std Median Q25 Q75 

 [kt-N yr-1] [kt-N yr-1] [kt-N yr-1] [kt-N yr-1] [kt-N yr-1] 

      

N-Inputs 76.5 3.2 77.8 73.3 79.1 

N-Outputs 71.7 3.2 71.2 69.4 73.7 

N-stock-changes 4.8 0.0 6.6 3.9 5.4 

      

Input fluxes      

N deposition 2.0 0.3 2.1 1.9 2.1 

Bio. N fixation 16.7 1.6 16.7 15.9 17.5 

N in min. fertilizer 28.9 1.7 29.3 27.6 29.8 

N in organic fertilizer 28.9 1.3 29.2 27.9 29.8 
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Output fluxes      

Gaseous emissions1) 21.2 3.1 21.1 18.9 23.4 

N2O 0.9 0.3 0.9 0.7 1.1 

NO 1.1 0.5 1.0 0.7 1.4 

N2 4.9 2.4 4.5 2.9 6.6 

NH3 14.3 2.6 13.5 12.5 15.6 

Aquatic fluxes2)      

NO3 leaching 3.9 1.3 3.8 3.0 4.7 

      

1) Gaseous emissions are the sum of N2O, NO, N2 and NH3 fluxes; 2) Aquatic flux is nitrate leaching (NO3-) 1252 

 1253 

Table A 5. Total crop yields per cultivar and year.  1254 

Crop Yields [tons dry matter] 

Crops 2012 2013 2014 2015 2016 Mean 

Cotton 303 676.9 374 424.6 359 806.7 322 292.0 285 780.3 329 196.1 

Clover 302 753.2 319 401.7 338 134.6 341 938.4 360 693.9 332 584.4 

Wheat 477 700.7 461 875.5 395 902.1 430 014.4 450 254.3 443 149.4 

Barley 84 520.8 99 091.8 139 402.9 139 990.8 102 454.7 113 092.2 

Maize 332 531.6 431 324.6 377 783.9 351 285.4 334 277.7 365 440.6 

 1255 

 1256 

Figure 9. Shares of components of the annual nitrogen in- and output fluxes. 1257 

 1258 

Table A 6. Simulated crop yields per cultivar and year for the irrigated land. 1259 

Crop Yields [tons dry matter ha-1] 
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Crops Median Mean STD 

Cotton 4.0 3.7 0.9 

Clover 9.8 9.6 0.6 

Wheat 3.9 3.6 0.9 

Barley 5.3 5.0 1.2 

Maize 10.9 10.6 1.3 

 1260 
Table A 7. Simulated crop yields per cultivar and year for the rain feed land. 1261 

Crop Yields [tons dry matter ha-1] 

Crops Median Mean STD 

Cotton 3.0 2.9 0.7 

Clover 9.8 9.6 0.6 

Wheat 3.9 3.6 0.9 

Barley 4.0 3.9 0.9 

Maize 9.5 9.2 1.5 

 1262 
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